
www.manaraa.com

Journal of Digital information, volume 1 issue 4
Themes: Hypermedia systems
1999-01-14

Supporting Software Development in Virtual
Enterprises

John Noll and Walt Scacchi
ATRIUM Laboratory, University of Southern California

Email: jnoll@carbon.cudenver.edu, wscacchi@rcf.usc.edu
Key features References; Figures 1, 2, 3, 4, 5, 6; Tables 1, 2, 3

Abstract

This paper presents recent developments in a distributed semantic hypertext framework called
DHT that supports software development projects within virtual enterprises. We show how
hypertext functionality embodied in DHT solves the practical problems of project
coordination. These include collaborative data sharing in a virtual enterprise of distributed
teams, integrating existing tools and environments, and enacting software processes to
coordinate development activities for teams across wide-area networks.In particular, we
describe how software process enactment can be achieved within a virtual enterprise without
centralized mechanisms. This is when the process description is represented as a user-
navigable hypertext graph the nodes of which associate process steps, staff roles and associated
tools with designated software products. Overall, these capabilities provide support for
coordinating software development projects across a virtual enterprise of teams connected via
the Internet.

Keywords: project coordination, distributed hypertext, software process enactment, tool
integration, Internet

1 Introduction

Software development projects in the future will increasingly take place in an environment where everything is
potentially distributed. [S91, N94] The addition of new software project technologies such as agents, architectural
middleware, applets, plug-ins, multi-user dialogue systems (MUDs/MOOs), and the World-Wide Web further
reinforce the trend toward ’distributed everything’. Software development teams can thus be highly decentralized,
both physically and organizationally. Software system products will be produced by loosely coupled ’virtual
enterprises’ composed of development teams from different organizations who collaborate on specific projects
across an information infrastructure, then disband to form new alliances for other projects. Participants in virtual
enterprises retain a high degree of autonomy over their own development activities, product data, tools and
environments.

These conditions will increase concerns for how to accommodate heterogeneity while maintaining administrative
autonomy and transparent access to shared online resources. In addition, participating teams will need to follow
well-defined processes to coordinate their work and share objects, resources, intermediate work products--or

Contents

� 1 Introduction
� 2 Overview of the DHT

approach
� Architecture
� Data model

� 3 Tool integration
� Object caching

� 4 Incorporating process
enactment

� 5 Related work
� 6 Discussion and

conclusions
� Acknowledgements
� References

Page 1 of 21Supporting Software Development in Virtual Enterprises: Noll and Scacchi: JoDI

www.manaraa.com

more simply, artifacts--with other members. Thus, coordinating software development projects in the face of total
distribution requires the ability to access, integrate, communicate and update software products, processes, staff
roles, tools and repositories, via a wide-area information infrastructure. [S91, SM97]

Figure 1. Virtual enterprise scenario for a distributed software development project

Figure 1 depicts an example of such a future development scenario: a loose collaboration among customer,
consultant, vendor and software contractor organizations is formed to enhance the customer’s legacy simulation
system. In this case the contractor will integrate the commercial vendor’s user interface software components with
the customer’s legacy system, according to the process specified by the consultant. Further, the contractor must
access, reference and link the customer’s requirements specification to corresponding components in the
integrated version of the legacy system, the vendor’s user interface components, and the contractor added ’glue
code’ (or middleware), to support requirements traceability, as specified by the consultant’s process. Each team
has its own tools, software artifacts and repositories (e.g. the customer has a relational database management
system as its (SQL/RDBMS) repository, the vendor has a file system repository, the contractor uses a version
control (a Unix-based revision control system--RCS) repository, and the consultant has a knowledge-based
process model repository). Each team also requires access to at least part of the others’ artifacts. Subsequently,
each will need to update and expand the shared set of products that represents the project’s collective output and
deliverables.

Due to geographic separation and the virtual enterprise’s loose collaborative structure, each team will be highly
autonomous, managing its own computing environment, tools, data and staff. Thus, we cannot assume there will
be a single physically central file system, database, agenda, or some other coordination mechanism that is
sufficient to serve as the single integrating resource. Similarly, we cannot assume that all teams will agree to

Page 2 of 21Supporting Software Development in Virtual Enterprises: Noll and Scacchi: JoDI

www.manaraa.com

adopt and use any one team’s object storage manager, data model, or update control policies. Nonetheless, it will
be necessary for each team to be able to modify jointly developed software project artifacts, documents, agendas
or process models.

The virtual enterprise needs to produce a set of shared artifacts in some coordinated way, but cannot rely on a
central mechanism to provide a shared information space, support communication or coordinate access to shared
objects. Thus, the problem denoted by the question mark in Figure 1 and addressed by this paper is:

how to coordinate the information objects, tools, work processes, and collaboration among
autonomous, decentralized development teams, given the absence of a shared central repository or
coordination mechanism in an Internet environment.

A solution must support:

� Collaboration and information sharing:
� provide transparent access to artifacts and relationships in heterogeneous, autonomous legacy

repositories [NS91]
� preserve the local autonomy of integrated data, tool or product repositories [NS94]
� integrate existing/new tools, components and engineering environments in a simple, incremental

manner
� Coordination of concurrent activities:

� integrate the modeling and execution of development processes for different staff roles with specified
tools, artifacts and workspaces [MS92]

� control concurrent access to shared objects to ensure their consistency [NS94]
� support software process modeling and enactment in widely distributed Internet based environments

� Cooperative communication:
� provide a clearinghouse of information such as process enactment histories, design discussions,

product annotations, etc., that capture and record interaction between developers [GS89, NS91,
NS94]

� Composition and configuration:
� model software development artifacts, documents, versions, staff roles and other relationships

[GS89, NS91, NS94, MS96]
� Support the well-formed composition and interfacing of objects that represent project products,

processes, tools, staff roles and supporting environments [MS96, SM97]

In addition, the solution should yield a simple implementation strategy. This goal stems from the purpose of
virtual enterprises as a way to react to rapidly changing marketplaces. The cost or effort required of an
implementation should not defeat this purpose.

This paper focusses on describing hypertext functionality that addresses three inter-related goals for coordinating
software development projects across Internet based virtual enterprises:

1. integrating existing/new tools and environments needed to configure collaborative information-sharing
workspaces;

2. supporting software process modeling and enactment to coordinate the tools, product data and cooperative
teamwork activities of people working in wide-area settings;

3. providing a simple implementation strategy that operates over intranets or the Internet.

Previous work [NS91, NS94, NS97, SM97] discusses how we address the other goals. Below, we compare our
approach with other efforts addressing software development and project coordination over intranets or the

Page 3 of 21Supporting Software Development in Virtual Enterprises: Noll and Scacchi: JoDI

www.manaraa.com

Internet supported by hypertext functionality. Finally, we note that the version of the processing environment
described in this paper has been employed to support the development of process-driven software applications
that span multiple organizations connected by the Internet. [cf. SN97]

The remainder of this paper is organized as follows. The next section presents an overview of the approach,
which centers on the use of a distributed semantic hypertext representation and processing environment we call
DHT. This leads into a description of DHT’s data model and environment architecture. We discuss the DHT
approach to tool integration, and present an approach to software process modeling and enactment using DHT-
based hypertext browsing. We conclude with a discussion of related research.

2 Overview of the DHT approach

Our approach to project coordination and sharing of project artifacts is implemented in a framework that employs
two complementary forms of information integration:

� logical integration provides a view of the shared information space based on a virtual central artifact
repository to facilitate project coordination

� physical integration provides transparent access to objects that appear in the virtual repository, but are
actually stored and managed in autonomous, distributed, heterogeneous repositories.

The structure of the virtual repository is described with a semantic hypertext data model. [NS91] Hypertext is an
information management concept that organizes data into content objects called nodes, containing text, graphics,
binary data, or possibly audio and video, that are connected by links which establish relationships between nodes
or sub-parts of nodes. The resulting directed graph, called a hypertext corpus, forms a semantic network-like
structure that can capture rich data organization concepts while at the same time providing intuitive user
interaction via navigational browsing.

The DHT hypertext data model augments the traditional node and link model with aggregate constructs called
contexts that represent sub-graphs of the hypertext, and dynamic links that allow the relationships among nodes to
evolve automatically as artifacts are created and modified. The DHT data model defines the structure of objects in
the global hypertext, and the operations (including updates) that may be performed on them.

DHT achieves physical integration with a client-broker-server architecture that provides transparent access to
heterogeneous repositories through intermediary information brokers we call transformers. Clients are software
tools (or engineering environments) that developers use to access objects concurrently in server repositories.

Over the past five years that the DHT prototype has evolved, about a dozen different types of software
development tools and heterogeneous software repositories have been integrated to run within DHT. [NS91,
NS94]

2.1 Architecture

The DHT architecture is based on a client-broker-server model. [ACDC96] Clients implement all application
functionality that is not directly involved in a server’s storage management. Thus, a client is typically an
individual tool, but may be a complete software development environment.

Software artifacts are exported from their native repository through server transformers. A transformer is a kind

Page 4 of 21Supporting Software Development in Virtual Enterprises: Noll and Scacchi: JoDI

www.manaraa.com

of mediator that exports local objects (artifacts and relationships) as DHT nodes and links, and translates DHT
messages into local repository operations (Figure 2). Transformers run at the repository site, typically on the same
host as the repository; thus, from the repository viewpoint, the transformer appears to be just another local tool or
application.

A request-response style communication protocol implements the operations specified in the DHT data model,
[NS91, NS94] and includes provisions for locating transformers and authenticating and encrypting messages. The
protocol also provides a form of time stamp-based concurrency control [KS86, NS94] to track and prevent ’lost
updates’.

Figure 2. DHT architecture for integrating an SQL/RDBMS repository

Our experience has been that transformers for new repositories can be developed with modest effort (i.e. hours to
days), based on reusable server templates that are augmented with code to interact with specific repositories.

2.2 Data model

Page 5 of 21Supporting Software Development in Virtual Enterprises: Noll and Scacchi: JoDI

www.manaraa.com

The DHT data model consists of three types of primitive objects: nodes, that represent content objects such as
program modules or project documents; links that model relationships among nodes; and contexts, that enumerate
sets of links to allow specification of object compositions as sub-graphs. Nodes, links and contexts are all first
class objects having types, attributes and unique object identifiers (OIDs) associated with each. In addition, links
have anchors, that specify regions or sub-components within node contents to which the endpoints of a link are
attached.

Contexts enumerate, but do not actually contain, links. Thus, a given link can be a member of several contexts,
making it possible to compose different views of the same objects by imposing different structures or
configurations as described by links among those objects. Contexts are also first class objects, and so may serve
as the endpoints of links.

A fixed set of operations can be applied to DHT objects: create, delete, read and update an object. The owners or
administrators of a given repository can elect to provide any subset of these operations (e.g. segmented by user
groups, network location, or by type of client), as appropriate for the level of access they intend to offer. In
addition, any operation can be performed by a single repository on its own objects. Cooperation among
repositories is not required. Therefore, the DHT model preserves a high degree of local repository autonomy.

3 Tool integration

Whether artifacts are stored in a real or virtual repository, software developers create, manipulate and configure
shared artifacts using software tools and environments. Many of these objects will exist before the virtual
enterprise is formed, and thus before integration by DHT. It is impractical to expect developers and organizations
to abandon their favorite tools to use new tools that can access a DHT corpus. Therefore, DHT includes a strategy
for migrating existing and new tools to the DHT environment, and a configurable cache mechanism to enable
alternative approaches for creating access to, and controlling concurrent updates to, collaborative information
spaces.

The migration strategy specifies five levels of integration:

� Level 0. At the foundation level DHT provides a process integration capability [cf. MS92] that enables the
configuration (via incremental modeling) and binding of individual developers to development roles,
process tasks, and product components to appropriate (client-side) tools. During process prototyping the
choice of tool(s) may be unspecified (no tool) or specified by class name or similar place holder (tool stub
or bitmap), which enables process walkthrough or simulation. [S96, SM97] To support process enactment,
executable tools must be bound to corresponding task steps in order to be invoked on the specified product
component.

� Level 1. At this level tools are not integrated at all. They exist unmodified, or as ’helper applications’, and
require auxiliary tools (e.g. Web browsers) to interact with DHT on their behalf. Auxiliary tools simply
perform node retrieval and update, and link resolution, to and from a tool’s standard input/output, or files in
the local file system. The use of a Web form-based interface to an existing relational data base management
system would be an example.

� Level 2. Integration at this level treats DHT nodes as file-like objects. Tools use file system calls like open
(), read(), write(), etc., to access a node’s contents, passing a string representation of the node’s OID rather
than a file pathname. Level 2 integration can be accomplished without recompiling or modifying source
code; simply relinking the tool with a DHT compatibility library (described below) is all that is required.
Note, however, that Level 2 tools do not have knowledge of DHT links.

� Level 3. At this level a tool is aware of links as relationships among objects, and can follow them. This
awareness does not appear at the user interface. An example of a level 3 tool is a document compiler that

Page 6 of 21Supporting Software Development in Virtual Enterprises: Noll and Scacchi: JoDI

www.manaraa.com

resolves links of type ’include’ to incorporate text from other nodes into a source node.
� Level 4. Last, at this level a tool integrates hypertext browsing and linking into its user interface. This may

require extensive modification to the tool’s source code. Fortunately, many tools and environments
incorporate extension languages or escapes to external programs that can be used to implement linking
without re-compilation. For example, this technique was used to implement the DHT editor using GNU
Emacs Lisp. Process modeling and enactment are supported at Level 0, and this is described later. It can be
used together with any other level of tool integration.

Levels 0 and 1 provide ’facade-level’ integration of tools at the user interface. Levels 2 to 4 provide increasing
scope for data integration capabilities. Control integration of the kind represented by the use of a software bus or
similar message/event broadcast mechanism are not provided, however. As Reiss [R96, p. 405] observes, control
integration forces tools to have a common reference framework, which is typically a file name and line number.
In this regard, the Level 2 integration scheme for file system emulation could therefore be used to support
compatibility with such a control integration scheme. The following sub-sections expand on the role of DHT’s file
system emulation scheme and object caching framework.
A vast legacy of software development tools and environments use the file system as their repository. These
applications read and write objects as files through the file system interface, typically by calling standard I/O
library routines supplied for the tool’s implementation language. Our goal to provide a reasonable cost
implementation strategy precludes requiring that all of these tools be modified to use the DHT tool/application
interface in place of the file system library.

To solve this problem, the DHT architecture exploits the file-like nature of DHT atomic nodes to provide a file
system emulation library. This library intercepts file system calls and converts them to DHT access operations
when strings encoding DHT object identifiers are passed as the pathname argument. As an example, the entry
points for the Unix version of this library are shown in Table 1.

To enable a tool for DHT access, one simply re-links it with the emulation library. Thus, the tool will continue to
function as before when invoked with real file names, yet will retrieve contents from the DHT object cache
(described below) when DHT object identifiers are used.

3.1 Object caching

Table 1. DHT file system emulation
functions

System call Equivalent DHT operation

open() Read

access() same as open()

read() read() from contents file

write() write() to contents file

close() Update; Sync

stat() stat() on contents file

Page 7 of 21Supporting Software Development in Virtual Enterprises: Noll and Scacchi: JoDI

www.manaraa.com

Many software development artifacts which DHT manages change slowly, while others see frequent access
during a short period of time. To facilitate collaborative information sharing, and to improve access latency and
reduce transformer loads, we have found it desirable to cache frequently used objects, especially those from
repositories accessed over the Internet.

A cache layer is built into the the basic request interface to provide transparent node and link caching. The cache
is maintained in the local file system; node contents are cached in separate files to support the file system
emulation library discussed above, while links and node attributes are cached in a hash table. Clients call a set of
object access functions to retrieve objects through the cache layer; these are listed in Table 2.

Each DHT object has a ’time-to-live’ attribute that specifies the length of time an object in the cache is expected
to be valid. The cache layer uses this attribute, set by the transformer when the object is retrieved, to invalidate
objects in the cache upon access. An administrative function periodically sweeps through the entire cache to
remove objects whose time-to-live has expired.

The time-to-live attribute is not a guarantee of validity, however. Certain shared objects may be updated
frequently by multiple clients. To allow such clients to verify that requested objects have not been modified by
another client, the cache layer can be configured with different cache policies to support specific tool/application
needs:

� Never use the cached copy; always retrieve an object from the repository.
� Use the cached copy if its time-to-live has not expired.
� Use the cached copy if it has not been modified; verify this by retrieving the object’s time stamp from the

repository.
� Always use the cached copy if present, regardless of its time-to-live or time stamp.

The cache interface layer does not automatically write updates through to the repository. Instead, a separate
function DhtSync() causes the cache to send an update request to synchronize the cached copy with that in the
repository. This enables DHT integrated tools to tailor access to the cache for different policies for concurrent
object access/update. This is especially important when dealing with legacy repositories for software
development that impose different user workspace models. Therefore, when using DHT, we need not endorse
some particular workspace model as ’best in all circumstances’ and thus we can avoid or mitigate some of the
costs of transitioning to a different workspace model.

Table 2. Cache layer interface

Function Description

Read Retrieve the specified objects

ReadContents Return the file containing the object's contents

Update Update the cached copy of an object

Sync Update the specified object at the transformer

Source Evaluate a link's source predicate on a node

DhtResolve() Resolve a link given a source node and anchor

Page 8 of 21Supporting Software Development in Virtual Enterprises: Noll and Scacchi: JoDI

www.manaraa.com

Figure 3. Software development workspace models

As indicated in Figure 3, by delaying synchronization and specifying the non-validating cache policy, the cache
can be used as a ’local workspace’. Objects, once placed into the cache, are read and updated locally, and thus are
not affected by updates from other developers. A ’sweep’ application periodically synchronizes the cached copies,
possibly invoking tools that will merge objects that have changed in the interim.

Alternately, updates can be written-through immediately, by calling DhtSync() after each update operation. [cf.
BHP92] This, coupled with the verifying cache policy, can be used to implement a ’shared workspace’ policy for
development (Figure 3), in which each developer sees updates from other developers upon object access.

To simulate a ’RCS-style’ of version controlled development, in which developers obtain a transaction or

Page 9 of 21Supporting Software Development in Virtual Enterprises: Noll and Scacchi: JoDI

www.manaraa.com

exclusive write access to an object through locking, a lock attribute must be added to objects. The lock is bound
to the user-ID of the developer who seeks to control the object. The DHT concurrency mechanism ensures that
only one developer can set the lock, which is cleared when the object is ’released’. However, applications must
cooperate by not modifying objects unless they have successfully set the lock attribute; there is no way to enforce
the lock by denying updates if someone insists on updating an object. This policy can be coupled with the
validating or non-validating cache policy, depending on the preferences of the developer.

Taken together, the multi-level scheme for integrating new/legacy tools, and support for different policies for
configuring object sharing workspaces, provides DHT will an ability to configure and coordinate collaborative
workspaces within a project. These workspaces can then be accessed concurrently and updated using tools
familiar to distributed developers, even though the individual tools and object repositories may either lack such
support, or implement different policies for sharing access and synchronizing updates. Nonetheless, the challenge
remains of how best to support cache consistency in the light of the need to maintain autonomy conditions.

4 Incorporating process enactment

A software process is a partially ordered set of tasks performed to develop software. A software process model is
a description of a software process. If the description is sufficiently formalized, it is possible to execute process
models for simulation, analysis and enactment. Enactment, in turn, is a computer-supported activity involving one
or more developers. Developers perform process steps using integrated tools to create, manipulate, update or
configure designated software development artifacts, according to the process fragments assigned to the
corresponding staff roles.

Software process enactment uses the formal description of a software process to guide, monitor and control the
process by having a process interpreter or engine execute a formal process description. The interpreter can
perform three functions:

� Guidance involves leading developers through the process by issuing prompts or notifications as to what
tasks should be performed at a given time.

� Monitoring allows managers and developers to assess the current state and progress of the process.
� Control means ensuring the process is followed by restricting developer actions to those that conform to

the process description.

A process specifies what steps need to be performed to develop products. At any given time, several products
may be in development concurrently. Thus, it is important for a process enactment mechanism to be able to keep
track of multiple instances of a process simultaneously, and to be able to cope with the interactions among
multiple processes executing concurrently.

For example, a software system may have several developers modifying different program modules at the same
time. This means that for each module an instance of a software modification process needs to be executed.
Furthermore, different modules developed in different organizations, that are part of a common system, may be
constrained by different software processes.

A software process model has a natural representation as a hypertext graph. Nodes in the graph represent tasks or
process steps, while links specify both the order in which the tasks should be performed and the products on
which they should be performed. The resulting nodes, links and contexts can be browsed and followed just like
other hypertext graphs. A hypertext-based process model that links tasks to tools, staff roles and products thus
provides a means both for sharing information and coordinating development.

Page 10 of 21Supporting Software Development in Virtual Enterprises: Noll and Scacchi: JoDI

www.manaraa.com

A DHT software process model contains three types of links:

� Process decomposition links. These model the decomposition of high-level tasks into lower level, smaller
tasks, and eventually into primitive actions. [GS89] These are static links that do not change unless the
model itself is modified to correct errors or reflect changes in policy.

� Task and action precedence links. These specify the order in which tasks should be performed. These are
also static links that evolve slowly.

� Available task links. These model the relationship between a particular product node and the tasks which
should be performed on it at a given time, as specified by the process model. These are dynamic links that
change as the model is enacted.

As an example, the following is an informal description of a process fragment for modifying a program module:

� retrieve module
� edit module to implement changes
� compile module
� unit test module (’run’ module, observe output, check req-spec)
� if the unit test is successful, create a new version of the module; otherwise
� debug the module and return to step 1.

Figure 4. Simple software process model showing decomposition and precedence links

When this description is represented as a DHT process graph (e.g. Figure 4), this model can be instantiated,
interpreted and enacted with a process link server. A process link server acts as a networked hypertext operating
system [NLSS96] that manages user-level processes in a manner somewhat analogous to how a conventional
multi-tasking operating system manages computational processes (e.g. resource allocation, context management,
maintaining state using program counters, etc.). At a given time, many instances of user-level processes may be
active, revealing progress made on different software modules by different developers. Each instance has separate
process state [H92, MS92] including the module being modified, the developer doing the modification, the last
step completed, etc. To support process enactment, it is necessary to keep track of this state for each process
instance [H92] in order to guide the developer through the process tasks in the appropriate sequence. This is the
function of ’available-task’ links. Available-task links serve to notify developers that a task should be performed
on an artifact by linking the product to a task node.

Page 11 of 21Supporting Software Development in Virtual Enterprises: Noll and Scacchi: JoDI

www.manaraa.com

In enacting a DHT-based process model, developers perform the assigned task/step using the tool(s) integrated
and bound to the task/step, accessing and processing the designated software development artifact(s) as specified
according to the developer’s role. For example, in the software process model in Figure 4, process task flow is
indicated by a directed process graph. Suppose the developer is to enact an instance of the ’Modify’ process.
Figure 5 displays a view of this process. The developer is currently visiting the ’main.c’ product, with the ’edit’
task pending. The developer performing the edit task creates or updates main.c using the tool ’emacs’. Table 3
shows how the task links are specified for this process.

Figure 5. View of a DHT product-centered process user interface

Table 3. Sample of link specifications of type
’DHT:Available-task’

Attribute Value

Page 12 of 21Supporting Software Development in Virtual Enterprises: Noll and Scacchi: JoDI

www.manaraa.com

Available-task link for ’edit’ task

Available-task link for ’compile’ task

Available-task link for ’run’ task

Process state is represented by available-task links. They reflect the state of the products (artifacts) that the
process instance affects: when the ’edit’ task above is performed on a module, its state changes, as reflected by the
changes to its contents and time stamp affected by the edit. A link source predicate can examine this state to
establish a relationship between a product node and a task node. When the link source predicate is true when
applied to the product node, the link will resolve to a task node that should be performed on the product.

source {[type $node]==DHT:C}

source_anchor Global

dest {eval [get-contents process:edit]}

dest_anchor Global

type DHT:Available-task

Attribute Value

source
{[type $node]==DHT:C && [status
$node]=="edited"}

source_anchor Global

dest {eval [get-contents process:compile]}

dest_anchor Global

type DHT:Available-task

Attribute Value

source {[type $node]==DHT:C && [status $node]=="compiled"}

source_anchor Global

dest process:unit-test-req-spec

dest_anchor Global

type DHT:Available-task

Page 13 of 21Supporting Software Development in Virtual Enterprises: Noll and Scacchi: JoDI

www.manaraa.com

In the screen view of Figure 5 the ’edit’ link marker indicated in the upper left frame appears as it usually does for
Web browsing, whereas the lower right frame displays the contents of the link destination (as task node) as a
script. The script is generated automatically by a process model compiler, which also generates the links for the
process task steps, product (and product model) and status handler, which are bound to the specified staff role
user’s workspace. The developer’s selection of the ’edit’ task thus triggers execution of this script. When this script
is activated, the editor is started with the designated software hypertext source code node loaded, as shown in an
overlay window in Figure 5. To have external tools that require their own window(s) to appear within the process
user interface requires their encapsulation using a display server mechanism such as WinFrame (from Citrix Inc.),
WebTermX (from White Pine Inc.), or similar. The lower left frame of Figure 5 indicates the state value
("DONE") of the task that the developer selects when finished with ’edit’. This will then cause the ’available tasks’
list to be updated by re-evaluating the source predicates (see Table 3) of process links. The result is that the
’compile’ task link is now enabled and ready for selection (as specified by the ’Modify’ process model in Figure
4), while ’edit’ becomes disabled. The screen view would now unhighlight edit, highlight compile, while the
corresponding task link destination would utilize the script for ’compile’. Following the process in Figure 4, the
’run’ task takes similar form. After ’run’ is completed, then the developer chooses one of ’debug’ or ’check-in’ tasks
to perform, since both are enabled, as suggested in Figure 4.

Task nodes can either be narrative descriptions of the task to be performed, or executable scripts that
automatically perform the details of the task. In the latter case, the link’s resolution function passes the node to an
interpreter to execute the script.

The significance of this approach to modeling process instances is that the mechanism for process enactment is
embedded entirely within the process representation as a hypertext graph, together with the source predicates and
resolution functions of available-task links. In contrast to other enactment systems which employ an environment
accessed through a process-based user interface, process-aware tools, or process state databases to execute
process specifications, DHT process models can be enacted simply by browsing the process hypertext using any
DHT-compatible Web browser or tool. This means that support for wide-area process enactment can be
introduced into existing environments with minimal disruption when using DHT.

5 Related work

We have approached integration by providing the illusion of a central repository through the introduction of a
layer between storage managers and users of data. Such a layer provides a logically integrated ’virtual’ repository
of data objects that conform to a semantic hypertext data model. The DHT architecture provides the physical
integration of participating repositories necessary for developers to access instances of data objects. This provides
a basis for coordinating the processes, artifacts, products, tools and staff roles in a distributed software
development project.

Other research uses the same general approach we have taken for providing virtual repository services, but with
different data models and results. For example, network file system solutions such as NFS, AFS, or others,
[RP93] as well as the Web, implement a common global file system as the integration layer, where each
repository exports its objects as files in a single unified directory tree (e.g. via URLs). However, network file
systems are a lowest common denominator solution: the directory file model lacks explicit constructs to represent
the numerous semantic relationships that exist among software artifacts. [GS89, NS91, MS96] As a result, ad hoc
techniques such as file naming conventions, and numerous tool-specific databases like Makefiles, tag files, etc.,
are required to augment the basic directory file model. Consequently, information sharing and project
coordination support is at a rudimentary level.

The multi-database approach [BHP92] occupies the other extreme: here the integration layer provides a relational

Page 14 of 21Supporting Software Development in Virtual Enterprises: Noll and Scacchi: JoDI

www.manaraa.com

or object-oriented data model with explicit relationship types. This would seem to solve the relationship problem
of the network file systems. However, the complexity of constructing and maintaining a single global schema that
captures all of the concepts present in each participating repository, combined with the requirement that
integrated repositories have DBMS functionality (query language, data schema, transactions, etc.), generally
makes this approach costly and difficult to implement. [FHMS91] Similarly, the reliance on a DBMS for object
management services implies the need for a transaction manager to synchronize and coordinate development
process events. In contrast, DHT neither assumes nor requires a central database transaction manager or
coordination mechanism, yet provides process modeling and enactment, as well as support for heterogeneous
object management systems, all within a wide-area information infrastructure. DHT can incorporate both DBMS
and non-DBMS repositories. [NS91, NS94] In addition, DHT supports navigational browsing, versioning and
multiple workspace models.

A number of research projects have applied hypertext to software object management, including the Hypertext
Abstract Machine (HAM), [CG88] the Documents Integration Facility (DIF), [GS89] the Intelligent Software
Hypertext System (ISHYS) [GS90] and HyperCASE; [CR92] in fact, DHT’s contexts attempt to provide the same
abstraction capability as HAM’s contexts, while accommodating autonomous repositories. However, these are
based on a centralized single repository architecture.

Proxhy, [KL91] Chimera, [ATW94] Endeavors, [BT96] HyperDisco [WIL95] and OzWeb [KDJY97] offer
hypertext functionality supporting multiple repositories. In contrast to DHT, Proxhy and Chimera focus on adding
new links among existing artifacts. However, existing relationships among the artifacts or data repositories are
not translated into links. HyperDisco also addresses tool integration and provides a hierarchy of integration
levels. HyperDisco allows linking to artifacts that are not integrated into the hypertext, so tool integration is
characterized by the degree to which artifacts bound to a tool can be linked to other nodes. In contrast, DHT
assumes links are always between objects exported as hypertext nodes, and thus characterizes tool integration
according to the degree to which a tool manipulates and presents links.

The Open Hypermedia Systems Working Group [OHSWG97] is attempting to define standards for
interoperability among different hypermedia systems. Among the goals are to incorporate data from various
repositories, including non-hypermedia document repositories. In contrast to DHT, however, they do not
explicitly address transforming native structure into links; rather, the focus seems to be on adding link support to
existing applications and repositories.

Various approaches to linking incorporate different degrees of dynamism. Microcosm, for example, provides
’generic links’’ that link spans of text found in any node. [LDH92] Ashman and Verbyla propose a "functional
model of the link"’ to characterize the degree of ’externalization’’ and dynamism of different linking schemes.
[AV94] DHT’s dynamic links are an implementation of this model and as such provide both ’full’ dynamism and
externalization.

ISHYS [GS89] and Trellis [S94] explored software process modeling and enactment via hypertext. SigmaTrellis
utilizes a petri net based process enactment formalism, while ISHYS utilizes one based on a semantic network
the transitions of which are controlled by rule-based triggers. However, both ISHYS and sigmaTrellis provide
process enactment support through a centralized architecture. More recently HOSS, [NLSS96] Endeavors [BT96]
and OzWeb [KDJY97] have addressed process support and have extended their hypertext mechanisms to support
distributed capabilities similar to DHT, but with some differences. For example, HOSS, Endeavors, OzWeb and
DHT all provide a semantic hypertext modeling and process enactment capability, but differ in how process
behavior is specified (as methods or rules attached to activity objects for HOSS, Endeavors and OzWeb; as
predicates attached to dynamically updated precedence links in DHT).

Endeavors, OzWeb and HOSS address issues of versioning, as does DHT. [NS94] Based on the available reports,

Page 15 of 21Supporting Software Development in Virtual Enterprises: Noll and Scacchi: JoDI

www.manaraa.com

however, these systems have not yet addressed the range of standard configuration management (CM) services,
[D91] alternative workspace models and CM update policy models [F91] that have been addressed by DHT.
[NS94, NS97]

The OzWeb prototype seeks to provide an overall hypermedia collaboration environment supporting distributed
software project teams who collaborate and interact in ’groupspaces’ that manipulate ’subwebs’ of software
artifacts. These groupspaces incorporate concepts from multi-user dialogue systems (MUDs), which represent a
new kind of hypertext functionality that can support project communication, information sharing, and a place to
find and use tools.

Endeavors, HyperDisco, Desert and DHT provide alternative approaches to tool integration. Desert [R96] was not
designed around the use of software hypertext, as were the others. HyperDisco [WIL95] provides an object-
oriented scheme for tool integration, but an object-oriented scheme that inherits objects across a network can
violate the conditions for autonomy that DHT seeks to maintain. Endeavors has recently been extended [W97] to
support the integration of external applications or tools using a Chimera based scheme for Endeavor-to-tool
communications and display presentation. [ATW94] Nonetheless, in DHT five levels of tool integration support
the kinds of approaches that these three environments individually support.

There is growing interest in developing new technologies to enable to rapid formation and (re)configuration of
Internet- based virtual enterprises. Software product development and distribution, [N94] virtual software
configuration, [BNT96] and global team sub-contracting [CPC96] are of interest, as are applications to other
engineering design and manufacturing domains. [FTS+96] These efforts also envision different scenarios and
support mechanisms to facilitate project coordination. Nejmeh [N94] focuses on the inherent potential for the
Internet to serve as a medium for coordinating distributed development projects. However, he does not propose a
specific design or reference implementation to describe how project coordination might be achieved. Boldyreff et
al. [BNT96] highlight the need to support software configuration management processes across virtual enterprises
as an essential element of distributed project coordination. However, although they do not describe the design or
prototyping of such a coordination support environment, much of what DHT provides, as outlined in this and a
companion paper, [NS97] moves towards demonstrating the approach they envision. Similarly, one vision from
IBM [CPC96] for how to support and coordinate project management when employing globally distributed
development sources also proposes using a DHT-like scheme as the underlying project coordination approach for
tool, data and process integration.

Elsewhere, we find efforts in advanced manufacturing and concurrent engineering research projects that are
exploring the potential of Internet-based agents and multi-agent design environments. For example, efforts at
Carnegie-Mellon University [FTS+96] seek to exploit the potential of the Web as a development and
manufacturing infrastructure for distributed projects. While providing project coordination services was not
explicitly addressed, they propose to use Web-based systems to integrate heterogeneous tools, product data and
repositories. In particular, the CMU effort cites the influence of our earlier work on semantic hypertext [GS89] as
a factor shaping the design and implementation of their approach. Thus, it appears that DHT-based or DHT-
derived capabilities could be brought to bear in supporting project coordination in distributed manufacturing
design and engineering projects, as well as in business process reengineering. [SM97, SN97]

6 Discussion and conclusions

We began with the assertion that in the future software development will be performed by cooperating
development teams. These teams will be autonomous, widely distributed and loosely associated in virtual
enterprises, yet will need to share data in the form of software artifacts, as well as coordinate and configure
relationships among them, to order and harmonize the products of software development processes.

Page 16 of 21Supporting Software Development in Virtual Enterprises: Noll and Scacchi: JoDI

www.manaraa.com

Project coordination entails supporting collaborative information sharing and tool usage, concurrent development
processes and data updates, intra- and inter-team communication, and well-formed composition of configured
software artifacts, products and documents. Software development projects that operate within virtual enterprises
cannot assume that a central repository or similar mechanism will exist to serve as the medium of coordination
among developers. Thus, the problem we addressed was how can virtual enterprises share, manipulate and update
data among their loosely-coupled teams. The solution we described provides a semantic hypertext to serve as a
virtual repository and distributed process enactment infrastructure, and thus as a project coordination mechanism
for virtual enterprises.

Our solution provides an incremental integration layer between autonomous software repositories and their users.
It in turn provides the appearance of a central repository as a coordination mechanism while maintaining the
distributed physical environment. [cf. SN97] Figure 6 portrays one view of this. The integration layer achieves
three types of integration:

� logical integration by describing data and operations on them in terms of a common semantic hypertext
data model

� physical integration via a distributed architecture for access to autonomous repositories
� process integration via representation and enactment of user-level work processes encoded within a

semantic hypertext interpreted by a process link server

Figure 6. Snapshot of integration in a virtual enterprise via DHT

The DHT approach has the following benefits:

� Evolutionary approach to coordination and integration. It is possible to migrate a conventional Unix
toolbox-oriented environment to DHT without recompiling any of the individual tools. This is because

Page 17 of 21Supporting Software Development in Virtual Enterprises: Noll and Scacchi: JoDI

www.manaraa.com

DHT offers several levels of tool integration, depending on the degree of ’hypertext awareness’ desired for a
given tool. This incremental evolutionary approach to incorporating existing tools into a DHT environment
enables tool integrators to make trade-offs between integration effort and hypertext functionality. This
gives administrators great flexibility to preserve existing investment in tools and training while
simultaneously obtaining the advantage of DHT’s integration and hypertext capabilities.

� Supporting project team coordination through transparent process enactment. By representing
software development processes as semantic hypertext graphs, DHT achieves enactment without the need
for an explicit process interpreter or environment. This is a significant advantage in a virtual enterprise,
where each participant may already have a favorite development environment in place. The DHT approach
allows process enactment to co-exist with existing tools and environments. Thus, as hinted at in Figure 5
and suggested by Figure 6, DHT provides support for integrating products, organizations (and staff roles,
not shown), tools and processes that may all be distributed across the Internet in a transparent manner.

� Comprehensive solution. The most significant contribution of DHT is the way it applies the features of
hypertext to data integration, combining intrinsic support for user interaction with data modeling and
access. DHT combines the advanced data modeling capabilities of semantic networks with the familiar
navigation-based access of file systems, and the intuitive direct manipulation browsing features of
hypertext. This means that as soon as a transformer is put in place to export data from a particular
repository, the user interface and access operations to those data are also in place. Furthermore, both the
user and access interface conform to a single common model, therefore maintaining highly transparent
access to heterogeneous data. The result is effective yet low in implementation cost.

We set out to develop a solution to the problem of how to coordinate software development projects within a
virtual enterprise. This entails support for:

� collaborative sharing software engineering data among distributed, autonomous development teams
� data modeling and management appropriate for software artifacts and relationships
� transparent access to heterogeneous, autonomous legacy repositories
� multi-level tool integration
� process modeling and wide-area enactment
� low implementation cost.

DHT achieves these goals by applying semantic hypertext concepts and functionality to logical and physical
integration. In so doing, DHT solves practical problems of sharing data and coordinating work processes in a
virtual enterprise, and establishes a basis for continuing research in integrating heterogeneous software object
management repositories, data models and implementation architectures using easily navigated wide-area
hypertexts.

Acknowledgements

An earlier version of this paper was presented at the Hypertext ’96 Workshop on Incorporating Hypertext
Functionality into Software Systems, Washington, DC, in February 1996, and at the 1996 California Software
Symposium, USC, Los Angeles, CA, in April 1996. Support for this research and preparation of this report was
provided by ONR grant N00014-94-1-0889. No endorsement implied. John Noll contributed to this work while
working as a research associate at the USC ATRIUM Laboratory. At present, he is an assistant professor of
Computer Science at the University of Colorado in Denver, CO.

References

Page 18 of 21Supporting Software Development in Virtual Enterprises: Noll and Scacchi: JoDI

www.manaraa.com

[ACDC96] Ashman, H., Cawley,T., Davis, S. and Chase, G. (1996) "Issues in the Use of External and Remote
Services in Hypermedia Systems". Workshop on Hypertext Functionality (HTFII), Washington, DC, March
http://www.ep.cs.nott.ac.uk/~hla/HTF/HTFII/Ashman.html

[ATW94] Anderson, K. M., Taylor, R. N. and Whitehead Jr., E. J. (1994) "Chimera: Hypertext for
heterogeneous software environments". In Proc. European Conference on Hypermedia Technology, Edinburgh,
Scotland, September, pp. 94-107

[AV94] Ashman, H. and Verbyla, J. (1994) "Dynamic Link Management Via the Functional Model of the
Link". Proceedings of the Basque International Workshop on Information Technology, February
http://www.cs.flinders.edu.au/research/hypermedia/biwit94.html

[BHP92] Bright, M. W., Hurson, A. R. and Pakzad, S. H. (1992) "A taxonomy and current issues in
multidatabase systems". IEEE Computer, Vol. 25, No. 3, March, 50-61

[BNT96] Boldyreff, C., Newman, J. and Taramaa, J. (1996) "Managing Process Improvement in Virtual
Software Corporations". Proceedings of WET ICE ’96 (IEEE Press)

[BT96] Bolcer, G. A. and Taylor, R. N. (1996) "Endeavors: A Process System Integration Infrastructure".
Proceedings of the 4th International Software Process Conference, Brighton, UK, December

[CG88] Cambell, B. and Goodman, J.M. (1998) "HAM: A General Purpose Hypertext Abstract Machine".
Communications of the ACM, Vol. 31, No. 7, July

[CPC96] Chaar, J., Paul, S. and Chillarege, R. (1996) "Virtual Project Management for Software".
Proceedings NSF Workshop on Workflow and Process Automation in Information Systems: State-of-the-art and
Future Directions, University of Georgia, Athens, GA, May http://lsdis.cs.uga.edu/activities/NSF-
workflow/santanu.html

[CR92] Cybulski, J. J. and Reed, K. (1992) "A hypertext based software engineering environment". IEEE
Software, March

[D91] Dart, S. (1991) "Concepts in Configuration Management Systems". In Proceedings of the Third
International Workshop on Software Configuration Management, ACM Sigsoft, pp. 1-18

[F91] Feiler, P. H. (1991) "Configuration Management Models in Commercial Environments". Technical Report
CMU/SEI-91-TR-7, Software Engineering Institute, Carnegie Mellon University, March

[FHMS91] Fang, D., Hammer, J., McLeod, D. and Si, A. (1991) "Remote-exchange: An approach to controlled
sharing among autonomous, heterogeneous database systems". In Proceedings IEEE CompCon, San Francisco,
February

[FTS+96] Finger, S., Terk, M., Subrahmanian, E., Kasabach, C., Prinz, F., Siewiorek, D.P., Smailagic, A.,
Stivoric, J. and Weiss, L. (1996) "Rapid Design and Manufacture of Wearable Computers". Communications of
the ACM, Vol. 39, No. 2, 63-70

[GS89] Garg, P. K. and Scacchi, W. (1989) "ISHYS: Designing an intelligent software hypertext system".
IEEE Expert, Vol. 4, No. 33, Fall, 52--63 (An earlier version appeared in Proceedings of ACM Hypertext '87
Conference, Chapel Hill, North Carolina, 1987)

Page 19 of 21Supporting Software Development in Virtual Enterprises: Noll and Scacchi: JoDI

www.manaraa.com

[GS90] Garg, P.K. and Scacchi, W. (1990) "A Hypertext System to Manage Software Life Cycle Documents".
IEEE Software, Vol. 7, No. 3, May, 90-99

[H92] Heimbigner, D. (992) "The ProcessWall: A process state server approach to process programming". In
Proceedings of the fifth SIGSOFT Symposium on Software Development Environments, Tyson’s Corner, Virginia,
December

[KDJY97] Kaiser, G.E., Dossick, S.E., Jiang, W. and Yang, J.J. (1997) "An Architecture for WWW-based
Hypercode Environments". Proceedings of the 19th IEEE International Conference on Software Engineering,
Boston, MA, May

[KL91] Kacmar, C.J. and Leggett, J.J. (1991) "PROXHY: A Process Oriented Extensible Hypertext
Architecture". ACM Transactions on Information Systems, Vol. 9, No. 4, October, 399-419

[KS86] Korth H.F. and Silbershatz, A. (1986) Database System Concepts (McGraw-Hill)

[LDH92] Li, Z., Davis, H. and Hall, W. (1992) "Hypermedia Links and Information Retrieval". Presented at
British Computer Society 14th Information Retrieval Colloquium, Lancaster, UK, April
http://www.mmrg.ecs.soton.ac.uk/publications/archive/li1992/

[MS92] Mi, P. and Scacchi, W. (1992) "Process integration in CASE environments". IEEE Software, Vol. 9,
No.2, March, 45-54 http://www.usc.edu/dept/ATRIUM/Papers/CASE_Process_Integration.ps

[MS96] Mi, P. and Scacchi, W. (1996) "A knowledge-based meta-model for formulating models of software
development processes". Decision Support Systems, Vol. 17, No. 3, 313-330
http://www.usc.edu/dept/ATRIUM/Papers/Process_Meta_Model.ps

[N94] Nejmeh, B.A. (1994) "Internet: A Strategic Tool for the Software Enterprise". Communications of the
ACM, Vol. 37, No. 11, November, 23-27

[NLSS96] Nurnberg, P.J., Leggett, J.J., Schneider, E.R. and Schnase, J. L. (1996) "Hypermedia Operating
Systems: A New Paradigm for Computing". Proceedings of ACM Hypertext ’96, Washington, DC, March
http://www.cs.unc.edu/~barman/HT96/P23/hossfin.html

[NS91] Noll, J. and Scacchi, W. (1991) "Integrating diverse information repositories: A distributed hypertext
approach". IEEE Computer, Vol. 24, No. 12, December, 38-45
http://www.usc.edu/dept/ATRIUM/Papers/Distributed_Hypertext.ps

[NS94] Noll, J. and Scacchi, W. (1994) "A hypertext system for integrating heterogeneous, autonomous
software repositories". In Proceedings of the third Irvine Software Symposium, University of California, Irvine,
CA, April, pp. 49-59 http://www.usc.edu/dept/ATRIUM/Papers/Integrating_Software_Repositories.ps

[NS97] Noll, J. and Scacchi, W. (1997) "Supporting Distributed Configuration Management in Virtual
Enterprises".
In Software Configuration Management, edited by R. Conradi, Lecture Notes in Computer Science, Vol. 1235,
pp. 142-160

[OHSWG97] Open Hypermedia Systems Working Group (1997) November
http://www.csdl.tamu.edu/ohs/ohswg.html

Page 20 of 21Supporting Software Development in Virtual Enterprises: Noll and Scacchi: JoDI

www.manaraa.com

[R96] Reiss, S. (1996) "Simplifying Data Integration: The Design of the Desert Software Development
Environment". Proceedings of the 18th IEEE International Conference on Software Engineering, Berlin, March,
pp. 398-407

[RP93] Rao, H.C. and Peterson, L.L. (1993) "Accessing files in an Internet: the Jade file system". IEEE
Transactions on Software Engineering, Vol. 19, No. 6, June, 613-625

[S91] Scacchi, W. (1991) "A software infrastructure for a distributed system factory". IEE Software Engineering
Journal, Vol. 6, No. 5, 355-369

[S96] Scacchi, W. (1996) "The life cycle engineering of complex processes and capabilities: An experience
report". Interactive presentation http://www.usc.edu/dept/ATRIUM/Software_Process.html

[SM97] Scacchi, W. and Mi, P. (1997) "Process Life Cycle Engineering: A Knowledge-Based Approach and
Environment".
Intelligent Systems in Accounting, Finance, and Management, Vol. 6, 83-107
http://www.usc.edu/dept/ATRIUM/Papers/Process_Life_Cycle.html

[SN97] Scacchi, W. and Noll, J. (1997) "Process-Driven Intranets: Life Cycle Support for Process
Reengineering". IEEE Internet Computing, Vol. 1, No. 5, September, 42--49
http://pdf.computer.org/ic/books/ic1997/pdf/w5042.pdf

[S94] Stotts, P.D. (1994) "Trellis: Process Models as Multi-Reader Collaborative Hyperdocuments." Proceedings
of the 9th Annual Software Process Workshop, Airlie, VA, October, pp. 85-89

[W97] Whitehead Jr., E.J. (1997) "An Architectural Model for Application Integration in Open Hypermedia
Environments". Proceedings of the 8th ACM Hypertext Conference, Southhampton, UK

[WIL95] Wiil, U. (1995) "HyperDisco: An Object-Oriented Hypermedia Framework for Flexible Software
System Integration". Proceedings of the 19th Annual International Computer Software and Applications
Conference (COMPSAC'95), Dallas, TX, August, pp. 298-305
http://www.daimi.aau.dk/~kock/Publications/HyperDisco/COMPSAC95.ps.gz

Page 21 of 21Supporting Software Development in Virtual Enterprises: Noll and Scacchi: JoDI

